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Abstract

We investigate the subdivision hierarchy produced by the step-2 chords
of a regular star polygon {n/2}. For the pentagram {5/2} we show that
every segment length is a power of λ = ϕ−1. Writing ϕ−k = ak+bk

√
5 for

k ∈ {0, 1, 2, 3}, we prove ak = (−1)kLk/2 and bk = (−1)k+1Fk/2, where
Fk and Lk are the Fibonacci and Lucas numbers. The coefficient |bk|
reaches the value 1 for the first time at k = 3; remarkably, k = 3 is also
the final possible layer, because each step-2 chord is intersected at most
twice. Thus the algebraic unit-coefficient threshold and the geometric
endpoint of subdivision coincide only in the pentagram, highlighting its
special role among {n/2} stars and providing a benchmark for extensions
to other stellations.

1 Introduction

Regular star polygons reveal a subtle interplay between elementary number the-
ory and planar geometry. The most familiar example, the pentagram, scales by
the reciprocal of the golden ratio ϕ, so that its visible segment lengths form
the cascade 1, ϕ−1, ϕ−2, ϕ−3. Writing each power as ak + bk

√
5 exposes a Fi-

bonacci–Lucas pattern in the coefficients, prompting the question: at which
subdivision layer does the irrational

√
5 term first appear with full unit weight?

Theorem 1 answers that question, proving that the jump occurs at layer
k = 3 and never sooner. Remark 1 shows that no further layers can arise in any
star polygon {n/2}, because each step-2 chord is crossed at most twice. Hence,
only in the pentagram does the algebraic unit-coefficient threshold coincide with
the geometric endpoint of the subdivision process. This coincidence places {5/2}
in a unique position among regular star polygons and sets a benchmark for
extending Fibonacci–Lucas phenomena to broader classes of stellations, such as
those arising in stellated polyhedra.
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2 Definitions

Definition 1 (Star polygon {n/2}). Let n ≥ 5 be an integer. The star polygon
with Schläfli symbol {n/2} is obtained by joining each of n equally spaced vertices
on a circle to the vertex two steps ahead. If n is odd, the result is an equiangular,
equilateral, self-intersecting, unicursal regular star polygon; if n is even, it is the
regular compound of two congruent (n/2)-gons (e.g. the hexagram when n = 6).

Definition 2 (Golden ratio). The golden ratio, denoted ϕ, is the unique positive
real number that satisfies

ϕ2 = ϕ+ 1, ϕ > 0.

Solving the quadratic gives

ϕ =
1 +

√
5

2
≈ 1.618 034.

Equivalently, when a line segment of total length a+ b is divided into parts with
lengths a > b > 0, the common value of the two ratios is the golden ratio:

ϕ =
a+ b

a
=

a

b
.

The reciprocal of the golden ratio is

ϕ−1 =

√
5− 1

2
= ϕ− 1 ≈ 0.618 034.

Definition 3 (Subdivision layers). Let λ be the characteristic scaling ratio
of a star polygon {n/2}. The subdivision layers are indexed by integers k ∈
{0, 1, 2, 3}, with layer 0 the outermost star edges. Layer k has characteristic
edge lengths scaled by λ k relative to those of layer 0.

Definition 4 (Pentagram). The pentagram is the regular star polygon with
Schläfli symbol {5/2}, obtained by joining each of five equally spaced vertices
on a circle to the vertex two steps ahead; it is a self-intersecting, unicursal,
equiangular, and equilateral polygon. When the outer edges of the pentagram
have length 1 we speak of a unit pentagram. In this normalization every segment
length is a power of the similarity factor

λ = ϕ−1 =
√
5−1
2 ≈ 0.618,

namely λ k with k ∈ {0, 1, 2, 3}.
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3 Preliminaries

Lemma 1 (Fibonacci coefficients in pentagram subdivision layers). Let λ = ϕ−1

be the characteristic scaling ratio of the pentagram. For every k ∈ N0,

ϕ−k = ak + bk
√
5, bk = (−1)k+1Fk

2
, ak = (−1)k

Lk

2
,

where Fk and Lk are the k-th Fibonacci and Lucas numbers, respectively (F0 =
0, F1 = 1; L0 = 2, L1 = 1). Hence |bk| = |Fk|/2; the magnitude of the

√
5-term

at subdivision layer k is governed by the Fibonacci sequence. Explicitly,

Layer 0 (λ0) : F0 = 0, b0 = 0, ϕ 0 = 1,

Layer 1 (λ1) : F1 = 1, b1 = 1
2 , ϕ−1 =

√
5−1
2 ≈ 0.618,

Layer 2 (λ2) : F2 = 1, b2 = − 1
2 , ϕ−2 = 3−

√
5

2 ≈ 0.382,

Layer 3 (λ3) : F3 = 2, b3 = 1, ϕ−3 =
√
5− 2 ≈ 0.236.

The first layer with |bk| = 1 is k = 3, marking the appearance of an irrational√
5-term whose coefficient has unit magnitude in the subdivision hierarchy. In

a star polygon {n/2} this is also the smallest (and final) subdivision layer (see
Remark 1).

Remark 1. In any star polygon {n/2} the subdivision process stops after three
layers: each step-2 chord is crossed by at most two other chords, so no new
intersection points arise beyond layer k = 3.

Figure 1: Construction of a regular pentagram showing vertices A, B, D, F , G
and intersection points C, E.
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Lemma 2 (Powers of ϕ−1 in the unit pentagram). In the unit pentagram (each
outer edge has length 1) every segment created by the intersections of step-2
chords has length ϕ−k for some k ∈ {0, 1, 2, 3}. Equivalently, the set of distinct
lengths is {1, ϕ−1, ϕ−2, ϕ−3}.

Proof. Normalize the pentagram in Figure 1 so that all five outer edges have
length λ0 = 1

|AB| = 1.

An interior intersection point C marking length λ1 = ϕ−1

|AC| =
√
5−1
2 ≈ 0.618.

An outer segment marking length λ2 = ϕ−2

|AE| = 3−
√
5

2 ≈ 0.382.

An inner segment marking length λ3 = ϕ−3

|CE| =
√
5− 2 ≈ 0.236.

Each step-2 chord is intersected at most twice (Remark 1), so every segment
produced anywhere in the pentagram is congruent to one of the four lengths
{λ0, λ1, λ2, λ3}. Thus all unit pentagram subdivision layers are powers of ϕ−1.

Remark 2. In the unit pentagram the triangle △ABC consists of one layer-0
edge |AB| = 1 and two layer-1 edges |AC| = |BC| = ϕ−1. Its perimeter is

P (△ABC) = |AB|+ 2|AC| = 1 + 2ϕ−1 =
√
5.

Hence a length
√
5 emerges from the subdivision layers in the unit pentagram.

4 Main Results

Theorem 1 (First unit-coefficient layer at minimum depth in the unit penta-
gram). Let λ = ϕ−1 be the characteristic scaling ratio of the unit pentagram
{5/2}, and write

ϕ−k = ak + bk
√
5, k ∈ {0, 1, 2, 3},

with ak, bk ∈ Z[ 12 ] as in Lemma 1. Then

|b0| = |b1| = |b2| < 1 and |b3| = 1.

Therefore

1. the first layer in which an irrational
√
5–term appears with unit coefficient

is k = 3; and
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2. by Remark 1 there are no further subdivision layers, so k = 3 is simul-
taneously the first unit-coefficient layer and the last possible layer in the
{n/2} subdivision hierarchy.

Proof. Lemma 1 gives bk = (−1)k+1Fk/2. Because F0 = 0 and F1 = F2 = 1, we
have |b0| = 0 and |b1| = |b2| = 1

2 < 1. For k = 3 one has F3 = 2, so |b3| = 1. No
larger k occurs in a {n/2} star (Remark 1), so the inequalities above exhaust
all possible layers.

5 Conclusion

We have given a self-contained algebraic–geometric analysis of the regular star
polygon family {n/2} with special attention to the pentagram {5/2}.

5.1 Algebraic and Geometric Analysis

Lemma 1 decomposes every scaling power ϕ−k (k ∈ {0, 1, 2, 3}) into half-integer
coefficients ak + bk

√
5 with bk = (−1)k+1Fk/2 and Fk the Fibonacci sequence.

The table shows that |bk| climbs from 0 to 1
2 and reaches 1 exactly at k = 3.

Lemma 2 proves that in the unit pentagram every segment length is one
of the four λ0, λ1, λ2, λ3 with λ = ϕ−1; Remark 1 explains why no further
subdivision layers can occur—each step-2 chord is intersected at most twice.

5.2 Synthesis

Theorem 1 identifies the first unit-coefficient layer at minimum depth in the
unit pentagram, showing that layer k = 3 is simultaneously:

· the first layer whose scaling factor carries an irrational
√
5-term with unit

coefficient—something that never occurs in any other star polygon {n/2}
with n ̸= 5; and

· the last layer that can appear in any {n/2} subdivision hierarchy, because
each step-2 chord is intersected at most twice.

Thus the algebraic unit-coefficient threshold and the geometric endpoint of
the subdivision process coincide only for the pentagram.

5.3 Outlook

Two directions invite further study. One is algebraic: extend the Fibonacci–Lucas
decomposition to broader families of star polygons {n/k} with k ̸= 2 or to
higher-order chords inside the same {n/2} figures. The other is geometric:
seek three-dimensional analogues in stellated polyhedra, where similar scale-
factor cascades may expose new links between number theory and polyhedral
geometry. The layer-3 coincidence established in this work provides a precise
benchmark for any such generalization.
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